New insight into the observation of spectroscopic strength reduction in atomic nuclei: implication for the physical meaning of spectroscopic factors.

نویسنده

  • N K Timofeyuk
چکیده

Experimental studies of one-nucleon knockout from magic nuclei suggest that their nucleon orbits are not fully occupied. This conflicts a commonly accepted view of the shell closure associated with such nuclei. The conflict can be reconciled if the overlap between initial and final nuclear states in a knockout reaction are calculated by a nonstandard method. The method employs an inhomogeneous equation based on correlation-dependent effective nucleon-nucleon interactions and allows the simplest wave functions, in which all nucleons occupy only the lowest nuclear orbits, to be used. The method also reproduces the recently established relation between reduction of spectroscopic strength, observed in knockout reactions on other nuclei, and nucleon binding energies. The implication of the inhomogeneous equation method for the physical meaning of spectroscopic factors is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA groove binding of an asymmetric cationic porphyrin and its Cu(II) complex: Resolved by spectroscopic, viscometric and molecular docking studies

In the present study, the interaction between water-soluble cationic asymmetric porphyrin, 5-(1-Hexadecyl pyridinium-4-yl)-10, 15, 20-tris (1-Butyl pyridinium-4-yl) Porphyrin Chloride, and its copper (II) derivative with calf thymus DNA (CT-DNA) were studied by means of spectroscopic techniques, viscosity measurements and molecular docking. The monitoring of the changes in visible absorbance sp...

متن کامل

FT-IR and NMR Spectroscopic Investigation and Hybrid Computational DFT/HF Analysis on the Molecular Structure of NSPD

Compound (N,N-bis (salicylidene) 1,2-diaminophenylene) was prepared by condensation of ethanolsolution of 2-Hydroxybanzaldehyde and 1,2-diaminophenylene. The compound was characterized by1H NMR, infrared spectroscopy (FT-IR) data and analytical data. The geometrical parameters andenergies have been obtained from Density Functional Theory (DFT) B3LYP method and Hartree-Fock (HF) method with 3-21...

متن کامل

AN FT-IR SPECTROSCOPIC INVESTIGATION OF IONIC SOLVATION OF ALKALINE EARTH CATIONS WITH DIMETWYLSULFOXIDE IN ANHYDROUS ACETONITRILE

The interaction between DMSO and alkaline earth perchlorates in anhydrous acetonitrile was investigated by FT-IR spectroscopy. A quantitative study was performed to determine the average number of bonded DMSO molecules using v (SO) and v (C-S) vibrations. Changes in coordination numbers were observed both with increasing atomic numbers and the solvent composition. None of the investigated...

متن کامل

Spectroscopic and FMO Studies of Cholesteryl Stereate Complexes for Electrooptical Activity

Computational studies have attracted the attention of researchers to understand the structural behavior of the molecules. These methods grade complex systems for novel properties with new predictions in areas of physics, chemistry and biology useful for conduct of experimental studies. Nanoparticles in present day technologies have become integral part in diverse areas of science mostly with me...

متن کامل

Properties of one-nucleon overlap functions for A 16 double-closed-shell nuclei in the source-term approach

One-nucleon overlap functions required for various nucleon-removal calculations must be solutions of the inhomogeneous equation with a source term whose shape and strength are determined by nuclear wave functions and the effective interaction of the removed nucleon with the nucleons in the remainder nucleus. A number of previous works has reported calculations of the source term and the overlap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 103 24  شماره 

صفحات  -

تاریخ انتشار 2009